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Ahatract-A space marching integration procedure is used to solve the Reynolds equations governing the 
axisymmetric incompressible turbulent swirling jet flow. Turbulence is modelled by the k--t model with an 
isotropic turbulent viscosity. Resides mean velocity field, turbulent properties-such as Reynolds stresses, 
turbulent kinetic energy and dissipation rate-are obtained and the results are compared with experimental 
data. Agreement is quite encouraging and shows that the assumption of isotropic turbulent viscosity seems 

plausible. 

1. INTRODUCTION 

FREE AND swirling jets are of practical importance in 

connection with vertical-take-off aircraft and are also 
used in many industrial applications to effect spraying, 
drying, heating, coaling and leaching of liquids and 
solid particles. These practical cases could be managed 
more efficiently with the aid of swirl. 

Much work has been done to predict turbulent flows 
numerically. Various turbulence models have been 
proposed to close the time-averaged governing 
equation system. 

Unlike wall boundary layers and free shear flows 
such as jets and wakes, only few studies have been 
devoted to rotating turbulent flows [l, 21. 

Ifthere is no reverse flow present, the boundary-layer 
approximation is valid and the radial axis is taken as the 
marching direction. The governing equations are 
parabolic, i.e. convection phenomena are important 

along this direction and diffusion is effective normal to 
it. This leads to a particular numerical technique [3-6] 
which enables the so-called parabolic form of the 
Navier-Stokes equations to be solved. The calculation 
always proceeds in the downstream direction. Thus the 
whole flow field can be rapidly covered. 

2. DEFINING THE PROBLEM 

This paper is devoted to the prediction of the swirling 
radial free jet issuing from the gap between two parallel 
discs, one of them rotating at a constant rate and the 
other one being at rest (Fig. 1). This problem has been 
studied experimentally by Muhe [7,8]. 

2.1. The governing equations 
The flow is axisymmetric, so the cylindrical-polar 

coordinates are used. 

I I 

FIG. 1. Flow geometry. 
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NOMENCLATURE 

c, total diffusion coefficient 4 defined in 
equation (11) cm2 s- ‘1 

D mean rate of strain tensor 
F function defined by F = W-q - L. U 
h gap width [m] 
k turbulent kinetic energy 

(17+7+~7)/2 [mm2 s-~] 
L(r) length scale used in the numerical 

procedure [m] 
P mean pressure m m - 2] 
PS rate of shear production of 

k, gr?id U @ 2D 
Pe P&let number, W - L * Aq/C, 
r, 0, z radial, angular and axial coordinates 

Cm, rad, ml 
R disc radius [m] 
Re rotating Reynolds number, Q - R2/v 

Re, turbulent Reynolds number, k2/v - E 
S swirl parameter, Q - R/o 

S, source term of variable 4 
S;, S$ linearized source terms defined in 

Table 1 
u, u, w radial, tangential and axial fluctuating 

velocities [m s - ‘1 
U, K W radial, tangential and axial mean 

velocity components [m s-l] 
if discharge exit velocity (volume flow 

rate/2nRh) [m s- ‘1 

@ tensorial product. 

Greek symbols 
6 half width of swirling jet defined from 

U = iJJ2 location [m] 
Ar size of the forward step, rd - r” [m] 
& turbulence energy dissipation rate 

[m2 sA3] 
&* dimensionless ration, h/R 

dimensionless coordinate, z/L(r) 

:, cross-stream size dimension of the 
control volume, q,+ 1 -vi_ 1 

‘1* dimensionless coordinate, z/6 

v, P kinematic viscosity and density of the 
fluid (air) [m2 s-‘, kg m-7 

VI kinematic turbulent viscosity defined in 
equation (6) Cm2 s- ‘1 

4 a general dependent variable 

%0 turbulent Prandtl number for 4 
n angular velocity of the rotating disc [s- ‘1. 

Superscripts 
d downstream station 
U upstream station 

mean quantities. 

Subscripts 

4 corresponding to the quantity 4 
+ point at r~+ 
- point at q- 
0 point at free stream 
m maximum. 

The parabolic equations governing a steady 
(a/at = 0), axisymmetric (a/a0 = 0), isothermal 
(T = cte) turbulent flow, without body forces are [9] : 

u~+w?.p&-$*f 

+d ,au _!!E (1) ( > aZ aZ aZ 

u;+w~++@$~ (2) 

a(rU)+a(rW)=O. 
Br aZ (3) 

In the simplified form (I), (2) of the Navier-Stokes 
equations, only the r-diffusion terms are neglected. 

2.2. The two-equation turbulence model 
As (l)-(3) do not constitute a closed set of equations, 

it is therefore necessary to specify the quantities 
produced by time-averaging the non-linear convection 
terms: ui, UT. These terms are the Reynolds shear 
stresses. 

However, the derivation ofexact transport equations 
for these stresses leads to new partial differential 
equations containing higher-order turbulence un- 
known correlations, such as utlw, etc. [lo, 111. 

This difficulty is generally avoided by expressing the 
turbulent stresses in terms of known quantities in order 
to obtain a closed set of equations. Turbulence models 
of this kind have been introduced by many authors for 
application to turbulent boundary-layer flows [12,13]. 
Most of these models are based on the concept of 
turbulent or eddy viscosity v,. 

For the radial swirling jet, the only significant 
Reynolds stresses are ui and 177 connected to the 
turbulent viscosity by : 

-m =v,.(!.E+?.K) 

av 
-umJ=v,~ - . ( > aZ 

The turbulent viscosity is defined by : 

v, = C, - k’/&. (6) 
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For thejet flow, the quantity C, is constant due to the 
absence of a solid wall proximity. 

k and E are obtained from the following transport 
equations [9, 14, 18, 193 : 

According to Oliver [14] the expression of E in 
cylindrical coordinates for an axisymmetric flow is : 

E=Y au,% g+u 

1 a+x, + r2 3 

where repeated indices hold for summation over 1 < i, 
j < 3, and ui is the velocity fluctuation in the direction i. 

In equation (8) fi is a function which takes into 
account the low turbulent Reynolds number effects at 
the vicinity of the jet exit : 

fi = l.O-0.3exp(-_ef). 

The different equations used here contain the quan- 
tities C,, C,r and C,, which in the absence of definite 
information, have been assumed constant for high 
Reynolds numbers. Their values have been taken from 
literature [16, 173 : C, = 0.09, C,i = 1.45, CE2 = 1.95. 

2.3. Boundary conditions 
At the free-stream edge of the jet, the following 

conditions are employed : 

p WI, = 0 

VI,= 0 (W 

uak 
ar o 

= V,‘PS,-&, 

The subscript o specifies outer conditions. The first 
condition (9a) implies that U at z = z,, can be different 
to zero even though this is not reported in Fig. 5. 
Moreover, Ud = r”* U”/rd with the outer velocity at 
r” = R is one hundredth of the core flow velocity 0. 
Equations (SC) and (9d) are the reduced forms of 
equations (7) and (8) by setting the transverse gradients 
to be zero [3,6]. 

3. NUMERICAL PROCEDURE 

Equations (l)-(3), (7) and (8) together with the 
boundary conditions (9) form a closed set of equations. 
These equations may be written in a unified form : 

where 4 = (U, V, k, E). S, is the source rate of the 
averaged quantity 4 and C, stands for the diffusion 
coefficient which can be expressed by : 

c,=v+$. (11) 

The values assigned to c,,+ are [ 151: u,,+ = 1 for 
I$ = U, K k and cl.4 = 1.3 for 4 = 8. 

3.1. Transformed coordinate system 
Since the domain of the jet flow grows with the radial 

distance and since the transverse flow velocity is 
generally very small, it is inconvenient to discretize the 
original differential equation (10). As a consequence, 
we introduce a length scale L(r) and we transform 
the physical plane r, z (Fig. 2a) into the r, q plane, where 

,Ar- 

I 

(4 04 
I I 
‘u ‘cl 

FIG. 2. Physical and calculation domain. 
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?J is the dimensionless coordinate defined by : 

9 = z/L(r). (12) 

A linear variation has been prescribed for L@ 
according to experimental data. 

The transformed domain is of rectangular geometry 
(Fig. 2b). 

3.2. Transformed diflerential equations 
Using the variables r, t], equations (3) and (10) are 

now formulated as : 

W) i au r aw 
--r__?-+_-‘-_=O 

ar L atl L atl 

1 a(rWfj) a(rLJ4) t a(rUcj) 

-‘all+ L -x1 aq ar 

those formulated by Patankar and Spalding [3]. Figure 
3 shows part of a finite-difference grid where the values 
of Q are assumed known. So we get : 

(rd UT@ - r” Vy&‘)Au 

=-j$*t C+$ +rS, (14) 
( 1 

where J!. = dL,ldr. 
In order to overcome the non-linearity of S,, we 

express it as [4] : 

s, = s;+s;-4. (15) 

The definition of q and S!$ are given in Table 1. 
By an order-of-magnitude analysis we can show that 

the quantity C,, v, - Ps - C,, - f2 - E is less than or equal 
to zero except possibly in the neighbourhood of S. 
Therefore, the source term Ss is not positive. 

The details of procedure for linearizing the source 
terms can be found in ref. [43. 

Before starting discretization of the above equations, 
they can recast in a different form by introducing the 
function F = W-q*L* V: 

(16) 

(17) 

3.3. Discretization 
The basic assumptions which are required for 

integration over the control volume are identical to 

Table 1. Linearized source terms 

+ q sp * 
V2 i ap 

u ___.- 0 
T P ar 

UV 
V -- 

r 
0 

whereAq+ = ~j+l-~,andA~- = qj-qj_l. 
The details of the discretization are given in ref. [9]. 
In the first term of equation (18) U* is unknown and 

must be estimated from the continuity equation in 
order to linearize the convection terms [S]. 

When using the hybrid scheme [4], the terms of 
diffusion in equation (18) are multiplied by a function G 
of the P&let number Pe which is defined by : 

G(Pe) = max (0.0, 1 - 0.5 IPet). (19) 

The P&let number accounts for the convection and 
diffusion fluxes through the boundaries of the control 
volume. 

3.4. The continuity equation 
The continuity equation (16) is discretized at node q, 

in order to compute W at the downstream location. The 
result is : 

W+ = W_ - &*Aq(rdU,d--r”Uj) 

+ tdtl,(v;+ I- u;- d/2. (20) 

t 
4 

i 

k V@d-E 0 

E 0 l/k(C,,v, * Ps - fi * C,, * 8) 
rd 

FIG. 3. Control volume. 



The prediction of turbulent swirling jet flow 173 

3.5. Solution procedure 
The resulting discretized equations (18) are solved by 

using a classical substitution technique of Thomas for 
inversion of tridiagonal matrices [20-221. 

The calculation domain is covered by a rectangular 
mesh with a non-uniform cell size such that the grid is 
very fine near the discs in the z and F directions. Figure 4 
shows the grid which has been used to perform the 
calculations. 

3.6. Conditions at the exit 
Starting profiles for velocity and turbulent quantities 

are taken from results due to a computation of the flow 
field between the discs [9]. These profiles are plotted on 
Fig. 5 vs the axial dimensionless variable I* for different 
values of S and for r/h = 60. 

4. PREDICTION AND DISCUSSION 

The calculated values of the various dependent 
variables are presented together with experimental 
data coming from refs. [7] and [8]. 

In order to make a comparison with the experimental 
data, the obtained predictions have been reduced to 
represent the following characteristics : dimensionless 
velocity profiles U/V, and V/V,, radial and tangential 

decay of maximum velocity, dimensionless turbulent 
shear stresses ui#, and viG/Vf. 

4.1. Dimensionless velocity profiles 
The dimensionless velocity profiles V/V, are 

compared for different values of S, and for two radial 
positions r/h = 80 and r/h = 104 (Figs. 6a and b). It can 
be seen that the calculation is in good agreement with 
the experimental data except for Jq*l > 1.6 because in 
this zone, the measurement by hot-wire anemo- 
meters are so difficult and this explains the absence of 
the experimental results for Iv*1 > 1.6. 

The tangential mean velocity is plotted in Figs. 7a 
and b. The agreement with experimental results is 
quite good for Iv*1 6 0.4, while for lq*l > 0.4 the 
standard k-e model overestimates the calculated 
profiles with respect to the experimental ones. The 
discrepancy could stem from either the measured 
values of V by hot-wire anemometers at low velocities 
[23] or from the e-equation [24,25]. 

4.2. Characteristic scales 
In Figs. 8 and 9 the variation of the predicted and 

measured radial and tangential maximum mean 
velocity are compared. The agreement is very 
satisfactory. 

The comparison between the measured and 

~iiiiii i i i 
I - 

FIG. 4. Calculation grid. 
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FIG. 6. Axial distribution of radial mean velocity U. 

calculated value of the local degree of swirl, i.e. the ratio 
V,,/U,,plottedinFig. 10,showsalso that theagreement 
is quite good except for the lowest values of S and r/h. 

Figure 11 compares the calculated and measured jet 
spreading rates. The agreement is not very good. 
Indeed, experiments show that the jet spreads linearly 
with r, whereas the calculations predict effectively the 
linearity of the growth but with slightly different slopes. 

A survey of this figure shows that the numerical 
prediction enables us to obtain a virtual origin of the jet 
independent on S and located between r/h = 50 and 
r/h = 60, while experiments show that for high values 
of S the virtual origins is located between r/h = 20 and 
rJh = 40. 

4.3. Turbulence characteristics 
The curves plotted in Fig. 12a, b and c give the 

turbulent shear stress iiZG scaled by Vi. Results are 

presented for three values of r/h and different values of 
S. Continuous and broken lines are present predictions 
and symbols measurements [S]. The prediction is 
correct, except in theintermittent region ofthejet where 
the k--E model leads to an overestimation of the 
Reynolds shear stress iii. 

The turbulent shear stress 177 is presented in the same 
manner in Figs. 13a, b and c. The k-e model provides 
similar profiles for all values of S, while experiments 
obtain this result only for high values of S. We will 
notice that for high values of S the prediction is correct 
and that for q* > 0 (respectively t)* < 0) 17% is 
overestimated (respectively underestimated) by the 
model. The discrepancy between the numerical and 
experimental results may be due to the model which 
connects the shear stress to the mean velocity gradient 
via the eddy viscosity concept. 

Profiles of k and E are not included for discussion 
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FIG. 9. Radial decay of the tangential maximum mean velocity V,. 
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FIG. 10. Variation of the local degree of swirl with swirl parameters S. 
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FIG. 11. Jet spreading with r/h. 
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-2.0 -1.6 -1.2 -0.8 -0.4 

FIG. 12. Axial distribution of iii profiles. (a) r/h = 80, (b) r/h = 92, (c) r/h = 104. 
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since, in the absence of relevant experimental data, no 
comparisons were possible. They can be found in ref. 

PI. 

5. CONCLUSIONS 

The study reported herein has shown that 
axisymmetric swirling flows such jets can be 
numerically investigated by the numerical method 
developed in ref. [3]. 

For large radial distance, experiments show that the 
maximum radial and tangential mean velocity vary 
asymptotically as l/r and l/r2 and computational 
predictions corroborate this result. 

The jet thickness is found to be a linear function of the 
downstream distance both experimentally and numeri- 
cally, but the calculated spreading rate is smaller than 
the experimental one. The discrepancy probably comes 
from the s-equation which is not entirely adequate for 
rotating flows [24-261. 

Nevertheless, the overall observation of predictions 
implies that the performance of a simple k-c model 
seems to be encouraging. 

Concerning future developments, there are several 
areas in which further research is necessary. The first is 
to modify the s-equation for swirling flows by making 
C,, a function ofthe gradient Richardson number [25]. 
The second is to use a spectral model like that of 
Hanjalic et al. [26] and Launder et al. [27]. The third is 
the need for additional experimental data, especially for 
the distributions of V and I?? which will enable 
refinement of the turbulence model. 
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PREDETERMINATION DUN ECOULEMENT DE JET TOURNANT TURBULENT 

R&nrmC-Une procedure de calcul pas a pas a et6 prise comme base de resolution numtrique des equations de 
Reynolds gouvemant l’ecoulement turbulent dans unjet tournant. Le caractere turbulent a et6 pris en compte 
par une modblisation simple bas&e sur le concept dune viscosite turbulente dont la determination a et& rtalisee 
a l’aide du modele k--E. Le calcul a permis de determiner, en plus des profils de vitesses moyennes, les tensions de 
Reynolds, l’inergie cinitique de turbulence et son taux de dissipation. L’accord avec les rtsultats 
experimentaux est relativement satisfaisant et montre que l’utilisation dune viscositd turbulente isotropique 

semble correcte. 

DIE BERECHNUNG DER STRBMUNG EINES TURBULENTEN ROTIERENDEN STRAHLS 

Zusammenfassung-EinerlumlichfortschreitendeIntegrationsmethodewurdeverwendet,umdieReynolds’- 
schen Gleichungen zu l&en, welche die achsensymmetrische, inkompressible, turbulente Strijmung eines 
rotierenden Strahls beschreiben. Als Turbulenzmodell wurde das k-s-Mode11 mit isotroper turbulenter 
Viskositlt gewlhlt. A&r dem mittleren Geschwindigkeitsfeld wurden die turbulenten Eigenschaften, wie 
z. B. Reynolds’sche Schubspannung, kinetische Turbulenzenergie sowie die Dissipationsrate, berechnet. Die 
Ergebnisse wurden mit experimentellen Daten verglichen. Die Ubereinstimmung ist relativ gut und zeigt, dag 

die Annahme einer isotropen turbulenten Viskositat gerechtfertigt erscheint. 

PACHET TYPEYJIEHTHOI’O 3AKPYHEHHOT0 CTPYRHOI-0 IIOTOKA 

Auuoramrn-Hcnonb3yercx Meron npocrpancraemioro mirerpriposamrr n,rtn pemeriun ypaetierruii Pet+ 
HOJIbLWl, O~llCbIBLWO~BX OC4ZCHMMeTpWIHOC HW-BHh,aeMOe Typ6)‘,WITHOC 3aKp,‘WHHOe CTpyiiHOC 

TCWHHC. kiCllOJIb3j’CTCK k--E MOJleJIb C WSOTpOmlOti T)‘p6)‘JleHTHOti BK3KOCTblO. nOMHM0 paCIIpCmYWiEUi 

OC~nHCHHbIX CKOpOCTeii OIIpeJJeJEHbI TaKHe XapaKT~HCTEiKH TypBj’JIeHTHOCTEi, KBK HUIpK~CHHff Peti- 

HOnbnCa,Typ6ynCHTHaKKuHe~~~KaK3HHepruKHCKOp~b~~~narulH.npOBe~eHOCpaBHeHuCC3KCne- 

PHMCHTaJIbHbIMH ,QBHHbIMIi H tIOJI)“IeHO 06Ha&%KHBmII&~ COOTBeTCTBHe. nOKtl3aH0, ‘iT0 nOIIyluCHHe 

06U30T~O~H08T~~6~~~HTHOiiBK3KOCTHKB~~~TC~~~O~H~O~p~B~~HHbIM. 


